Systems Therapeutics: Effective Treatment for Alzheimer’s Disease and MCI

Dale E. Bredesen, M.D.
Augustus Rose Professor
Director, Easton Center for Alzheimer’s Disease Research
Director, Neurodegenerative Disease Research
UCLA
Founding President, Buck Institute
“The goal of education is to turn an empty mind into an open mind.”

--Malcolm Forbes
30,000,000

patients in 2012

NAPA summit
160,000,000 patients in 2050
0

Cures

X Prize
Alzheimer’s Disease (AD) Therapeutic Landscape

APPROVED
- Donepezil (Aricept)
- Rivastigmine (Exelon)
- Galantamine (Razadyne)
- Tacrine (Cognex)
- Memantine (Namenda)

PHASE 3
- Solanezumab
- Bapineuzmab
- Alzemed *
- Semagacestat*
- Flurizan*
- Rosiglitazone*
- Phenserine*
- ELND005
- Valproate*
- Antioxidant
- Statins
- Dimebon
- EGCg

PHASE 2
- PBT2*
- NIC5-15
- Bryostatin-1
- EHT-0202*
- BMS708163
- ABT089*
- AZD3480*
- Huperzine-A*
- EVP6124
- MEM3454
- PF04447943
- AL-108*
- PF04360365
- Nicotinamide
- NP12
- ACC001
- NGF
- SB742457
- PRX03140*
- PUFA*
- TTP448

PHASE 1
- GSK933776*
- MABT5102A
- UB311
- R1450
- V950
- E2012*
- MK0752
- AF102B*
- Talsaclidine
- Begacestat
- PF3084014
- CTS21166
- CHF5074

* Clinical Trial in AD terminated

- ↓ Ab production
- ↓ Aβ aggregation
- ↑ Aβ clearance
- ↓ Tau aggregation/phosphor
- Cholinergic drugs
- Others
Recent Clinical Trial Failures

- Dimebon x2
- Semagacestat
- Rosiglitazone
- AN-1792
- Alzhemed
- Flurizan
- Rember
- Bapineuzumab
The big problem with neurodegenerative disease

Healthy Brain

Advanced Alzheimer’s

PET Scans:

Normal

Alzheimer’s

Alzheimer’s Disease Histopathology

Crump Institute for Biological Imaging
The Status Quo: Alzheimer’s is a disease of toxicity

- Focus is on the chemical & physical effects of Aβ peptide:
 - Lysosomotropic detergent
 - Metal-binding peptide
 - Reactive oxygen species
 - Many other theories
- Approach reinforced by 50,000+ papers...all of which fail to answer key questions
- Why do healthy brains produce Aβ peptide?
- Recent results from transgenic mice
A New View of Alzheimer’s Disease

Proliferation

Migration

Integration
Cancer: imbalance in proliferation/survival vs. turnover

Proliferation

- Oncogenes

Migration

- Tumor Suppressor Genes

Integration

- Cancer
Alzheimer’s disease: imbalance in plasticity

Proliferation Migration Integration

Synaptic Reorganization Synaptic Maintenance

ALZHEIMER’S

Alzheimer’s Disease
• It has been generally assumed that trophic factor withdrawal is associated with the loss of a positive survival signal, such as that associated with the phosphorylation of Akt.

• However, data accumulated over the past 20 years argue that there is a complementary cell death signal mediated by specific receptors, dubbed dependence receptors, activated by trophic ligand withdrawal but blocked by ligand binding (Rabizadeh et al., Science 1993; Mehlen et al., Nature 1998).

• Rita Levi-Montalcini, the 1986 Nobel Prize, and the trophic factor hypothesis.
Levi-Montalcini and the classic view

Trophic factor
The old view: passive death

No trophic ligand
The Dependence Receptor Concept

- **Trophic ligand**
- **No ligand (or anti-trophic ligand)**

Dependence Receptor

Programmed Cell death
An engineer’s view of the neuron
An engineer’s view of the neuron

Integration
Analog \rightarrow digital
Electrical (chemical) input
Via membrane conductance
$\Sigma =$ Electrical input \rightarrow electrical output
Integration over anatomical vs. biochemical space

- **Reelin**
- **Vitamin D**
 - (Thyroid, Estrogen, Progesterone)
- **Hormones**
- **Trophic Factors**
 - (NGF, BDNF, N1, etc.)
- **Cholesterol Metabolism**
 - (ApoE, ABCA1, etc.)
- **Neurotransmitters**
 - (Ach, glutamate, GABA, etc.)
- **ECM**
 - (collagen, laminin, netrin, heparin, etc.)
Integration over anatomical vs. biochemical space

- **Cholesterol Metabolism**: (ApoE, ABCA1, etc.)
- **Neurotransmitters**: (ACh, glutamate, GABA, etc.)
- **Vitamin D**
- **Hormones**, (Thyroid, Estrogen, Progesterone, etc.)
- **Trophic Factors**, (NGF, BDNF, N1, etc.)
- **ECM** (collagen, laminin, netrin, heparin, etc.)

Integration
Analog → digital (slow) output
Receptor signaling input
Via nuclei and cytoplasm
Σ = Chemical milieu input → morphogenetic output
Synaptic element interdependence

\[
\begin{align*}
\text{APP + Trophic Factor} & \quad \downarrow C_{31}, \beta\text{CTF}, s\text{APP}_\beta, A_\beta \\
\text{APP + A}_\beta & \quad \uparrow \text{AICD, KAI1} \\
& \quad \uparrow \text{APP-Fe65} \\
& \quad \uparrow \text{APP-Dab} \\
& \quad \downarrow \text{Thr668 phos} \\
\end{align*}
\]
The readout: plasticity ratio (cf. HDL:LDL)
ApoE4 and plasticity ratio

![Diagram showing the relationship between sAPPα, sAPPβ, CTFα, Aβ, Jcasp, and APP in trophic and anti-trophic conditions.](image)

<table>
<thead>
<tr>
<th>Condition</th>
<th>sAPPα/ sAPPβ</th>
<th>sAPPα/ Aβ1–40</th>
</tr>
</thead>
<tbody>
<tr>
<td>App</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>App+ApoE4</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>App+ApoE3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>App+ApoE4Δ</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* indicates statistical significance.
The Mouse That Remembered to Roar: Alzheimer’s Electrophysiology Normalized by Blocking C31

Galvan et al., PNAS 2006
Control mice in Morris water maze
“Mouzheimer’s”
Mouzheimer’s blocked
Is APP involved in physiological plasticity?
Normal mouse (trial #8)
“Sheldon Cooper mouse”
Alzflymer’s
Left: Off Right: On
Activity Assay

Total Activity: 24 hours

- **DR-**
- **DR+** (*)
- **AL-**
- **AL+**

APP, BACE/GS
Response to treatment with d-amphetamine

Before D-amphetamine treatment

On D-amphetamine (1.0 mg/ml)

24hr off D-amphetamine

Total Activity: 24 hours

DR- DR+ DR- DR+ DR- DR+

Before D-amphetamine treatment

On D-amphetamine (1.0 mg/ml)

24hr off D-amphetamine

APP,BACE/GS
A Drosophila Hyperactivity Disorder (ADHD)

• Males >> Females.
• Exacerbated markedly by high CHO:protein diet.
• Reduced with aging.
• Associated with sleep/nocturnal dysrhythmic pattern.
• Reversibly responsive to d-amphetamine.
• “Paradoxical response” to d-amphetamine.
Screening for Novel Therapeutics
APP forms homodimers
F03: Multiple Mechanisms Against Alzheimer’s

- Reduces $A\beta$
- Increases $sAPP\alpha$
- Blocks ApoE4 effect
- Improves LTP
- Blocks neuronal programmed cell death
- Excellent blood-brain barrier penetration
- High therapeutic index
- Markedly outperforms memantine and donepezil in Tg Mo
F03 restores novel object recognition completely.
A roof with 36 holes...
The first systems therapeutics clinical trial

- Systems Therapeutics (and U.S. case)
- F03
- Synaptik (multiple network-specific components)
- Computer-based assessment and memory training
- Sleep enhancement
- Exercise-induced BDNF increase
- AD-specific diet

First clinical trial is set for 2014.
Summary

• Our model suggests that AD is fundamentally related to a plasticity balance, analogous to oncogene:tumor suppressor gene balance.

• In this model, AD results from a synaptoblastic:synaptoclastic imbalance that is metabolically induced, mediated by dependence receptors (including APP), and amplified by prionic loops.

• Therefore, one translational approach involves correcting this imbalance by targeting APP signaling directly.

• However, an optimal approach would include impacting multiple network components, as physiologically and as far upstream as possible.

• We have had initial success both pre-clinically and clinically with this approach, but much more proof is needed, as well as optimization of each network component therapeutic.
Is Alzheimer’s disease incurable?

“Never doubt the ability of a small group of committed individuals to change the world. Indeed, it is the only thing that ever has.”

--- Margaret Mead