“Resolving Inflammation: Novel Control Pathways for Chronic Health Conditions”

Joan Clària

Hospital Clínic of Barcelona
Esther Koplowitz Research Center-IDIBAPS
School of Medicine-University of Barcelona
• Unresolved inflammation in chronic health conditions (i.e. obese subjects and associated disorders)

• Specialized pro-resolving lipid mediators (SPM).

• Deficit of SPM in chronic metabolic diseases.

• Biological properties of SPM on insulin sensitive tissues.

• In vitro actions of SPM in adipocytes, macrophages and liver cells.

• Translational studies in patients with chronic metabolic disorders.
Prevalent obesity comorbidities

INCREASED RISK:

- Type 2 diabetes (60-90%)
- Dyslipidemia (High LDL, TAG: 25-40%)
- Hypertension (>140/90: 70-80%)
- Vascular disease (CHD, stroke: 50-75%)
- Liver disease (20-40%)

Non-Alcoholic Fatty Liver Disease (NAFLD)

Association Between Visceral Fat and Insulin Resistance

Adapted from Carey et al. Diabetes 1996

"A Family", 1989 by Fernando Botero
Non-Alcoholic Fatty Liver Disease (NAFLD)

Prevalence in Obese Individuals:

- >40%
- >20%
- 5-10%

Steatosis
Fat accumulates in the liver

Steatohepatitis
Fat plus inflammation

Fibrosis/Cirrhosis
Scar tissue replaces liver cells

Non-Alcoholic (NAFLD)

Alcoholic (ALD)
Up-regulation of genes involved in the desaturation of fatty acids in patients with NASH

Biosynthesis of unsaturated fatty acids

FADS1 (D5 desaturase)
SCD-1 (D9 desaturase)
FADS2 (D6 desaturase)
ELOVL6
ELOVL5
SC5DL

López-Vicario and Clària. Gut 2014
Table. Hepatic fatty acid composition in Control and NAFLD patients

<table>
<thead>
<tr>
<th>PUFA</th>
<th>Control</th>
<th>NAFLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16:0, Palmitic acid</td>
<td>22.38 ± 0.12</td>
<td>29.77 ± 0.63***</td>
</tr>
<tr>
<td>C16:1, Palmitoleic acid</td>
<td>0.57 ± 0.02</td>
<td>0.67 ± 0.01*</td>
</tr>
<tr>
<td>C18:0, Stearic acid</td>
<td>12.18 ± 0.39</td>
<td>6.44 ± 0.17***</td>
</tr>
<tr>
<td>C18:1, Oleic acid</td>
<td>22.99 ± 1.25</td>
<td>41.15 ± 0.80***</td>
</tr>
<tr>
<td>C18:2n-6, Linoleic acid</td>
<td>17.24 ± 0.48</td>
<td>12.69 ± 0.18**</td>
</tr>
<tr>
<td>C18:3n-6, γ-linolenic acid</td>
<td>2.64 ± 0.14</td>
<td>0.66 ± 0.02***</td>
</tr>
<tr>
<td>C20:3n-6, DGLA</td>
<td>1.25 ± 0.05</td>
<td>0.44 ± 0.01***</td>
</tr>
<tr>
<td>C20:4n-6, AA</td>
<td>7.31 ± 0.33</td>
<td>1.33 ± 0.03***</td>
</tr>
<tr>
<td>C22:4n-6, Adrenic acid</td>
<td>0.45 ± 0.13</td>
<td>0.07 ± 0.002</td>
</tr>
<tr>
<td>C18:3n-3, Linoleic acid</td>
<td>0.34 ± 0.01</td>
<td>0.29 ± 0.01*</td>
</tr>
<tr>
<td>C20:5n-3, EPA</td>
<td>1.92 ± 0.31</td>
<td>0.11 ± 0.004*</td>
</tr>
<tr>
<td>C22:5n-3, DPA</td>
<td>0.38 ± 0.03</td>
<td>0.14 ± 0.003**</td>
</tr>
<tr>
<td>C22:6n-3, DHA</td>
<td>3.69 ± 0.24</td>
<td>0.50 ± 0.03***</td>
</tr>
</tbody>
</table>

All values are expressed as % area/gram liver tissue.
*P<0.05, ** P<0.01, *** P<0.001 vs. Control.
Adipokines in Obesity

Complement Factors:
Adipsin, complement factor B

Cytokines:
Leptin, adiponectin, resistin

Hormones:
TNFα, IL-6, IL-8, IL-10, MCP-1

Enzymes:
PAI-1, ACE, LPL

Growth Factors:
VEGF, HGF

Insulin Resistance
NAFLD

Obese

- **Anti-inflammatory Insulin Sensitizing**
 - Adiponectin

- **Pro-inflammatory Insulin Resistant**
 - Leptin, TNFα, IL-6, MCP-1

Unbalanced Adipokine Release
Obesity Triggers Adipose Tissue Inflammation

Adapted from Wellen and Hotamisligil. J Clin Invest. 2003
Unresolved inflamed Adipose Tissue = Target

NAFLD
Resolution is Part of the Inflammatory Response

Modified from Meneghin and Hogaboam, J. Clin. Invest. 2007
Lipidomic Analysis of Self-Resolving Exudates

Adapted from Bannenberg and Serhan, Biochim. Biophys. Acta 2010

Zymosan A (1 mg intraperitoneal)

Collect peritoneal exudates

LC-MS/MS analysis

Various timepoints

(time) 0

PMN number

Exudate level

ResOLUTION INTERVAL

Resolution interval

Exudate level

Fatty acids (FA)

FA oxygenated products

Adapted from Bannenberg and Serhan, Biochim. Biophys. Acta 2010
Fatty Acids

- Saturated (No bond)
- Monounsaturated (1 bond)
- Polyunsaturated (>1 bond)

Examples:
- Palmitic acid
- Oleic acid
- Linoleic acid
Bioactive Lipid Mediators

Lipid Mediators Derived from Polyunsaturated Fatty Acids

Omega-6
- Arachidonic Acid 20:4n-6
- First double bond at 6 carbons from methyl end

Omega-3
- DHA 22:6n-3
- EPA 20:5n-3
- First double bond at 3 carbons from methyl end

Inflammatory Mediators
- Prostaglandins and Leukotrienes

Anti-inflammatory Mediators
- Resolvins, Protectins and Maresins

SPM
- Derived from EPA and DHA through 5-lipoxygenase and 15-lipoxygenase pathways

Flowchart showing the conversion of arachidonic acid, EPA, and DHA into various lipids and metabolites.
Bioactive DHA Metabolome

17S-HDHA

17S-HpDHA

[N]PD1

17S-HpDHA

17R-HpDHA

AT-Resolvins

5-LOX

15-LOX

DHA

12-LOX

Epoxidation Hydrolysis

Peroxidase

Hydrolase

14S-HpDHA

MaR1

MaR2

17S-HDHA

7-hydroperoxy-17S-HDHA

5-LOX

7(8)-epoxy-17S-HDHA

5-LOX

4-hydroperoxy-17S-HDHA

Peroxidase

4(5)-epoxy-17S-HDHA

Peroxidase

RvD5

RvD1

RvD2

RvD3

RvD4

RvD6

Serhan CN. Nature 2014
Bioactive Lipid Mediators in Adipose Tissue

Pro-inflammatory Lipid Mediators
- Prostaglandins
- Leukotrienes

Specialized Pro-resolving Mediators (SPM)
- Protectins, Resolvin,
- Maresins and Lipoxins

White Adipose Tissue

Adipocytes

Stromal Vascular Cells
(pre-adipocytes, macrophages)

Adipose Tissue Inflammation and
Endocrine Dysfunction in Obesity
Increased Omega-6-derived Eicosanoids in Obesity

Deficit of Pro-resolving Mediators in Obese Adipose Tissue

Impaired Formation of Pro-resolving Mediators in Patients with Peripheral Vascular Disease

Figure:

- **Left:** Graph showing relative intensity over time (0-16 minutes) for various metabolites, including 14-H(p)DHA, 17-H(p)DHA, 14-HDHA, 17-HDHA, and PD1.
- **Middle:** Graphs showing relative intensity over m/z (120-360 Da) for 17-HDHA, PD1, and 14-HDHA.
- **Right:** Graphs showing relative intensity over pM for MCP-1, Resistin, PAI, and IL-8 in control and PVD conditions.

Table:

<table>
<thead>
<tr>
<th>Source</th>
<th>Spearman’s correlation coeff.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous</td>
<td>18-HEPE (n=11), pg/g</td>
<td>0.76</td>
</tr>
<tr>
<td>Subcutaneous</td>
<td>14-HDHA (n=11), pg/g</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Clària and Serhan. Am. J. Physiol. (Cell. Physiol.) 2013
Anatomical heterogeneity in human fat depots

Increased levels in self-resolving peri-wound human fat

Monohydroxy Biomarkers from DHA

Resolvins and Protectins from DHA

Clària and Serhan. Am. J. Physiol. (Cell. Physiol.) 2013
Pro-resolving Mediators Reduce Adipose Tissue Inflammation

Adiponectin

<table>
<thead>
<tr>
<th>Condition</th>
<th>Leptin</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>0.0</td>
<td><0.05</td>
</tr>
<tr>
<td>Obese</td>
<td>0.5</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Leptin

<table>
<thead>
<tr>
<th>Condition</th>
<th>Leptin</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0.2</td>
<td><0.05</td>
</tr>
<tr>
<td>LXA4</td>
<td>0.3</td>
<td><0.01</td>
</tr>
<tr>
<td>RvD1</td>
<td>0.1</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD2</td>
<td>0.0</td>
<td><0.001</td>
</tr>
<tr>
<td>SPM</td>
<td>0.3</td>
<td><0.05</td>
</tr>
</tbody>
</table>

IL-6

<table>
<thead>
<tr>
<th>Condition</th>
<th>IL-6</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>8x10^6</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD1</td>
<td>4x10^6</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD2</td>
<td>3x10^6</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Transadipose Migration

<table>
<thead>
<tr>
<th>Condition</th>
<th>Transadipose Migration</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>140%</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD1</td>
<td>100%</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD2</td>
<td>80%</td>
<td><0.05</td>
</tr>
</tbody>
</table>

LTB4

<table>
<thead>
<tr>
<th>Condition</th>
<th>LTB4</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>25%</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD1</td>
<td>20%</td>
<td><0.05</td>
</tr>
<tr>
<td>RvD2</td>
<td>15%</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Clària and Serhan. J. Immunol. 2012
RvD1 Promotes M2 Polarization of Adipose Tissue Macrophages

Non-Alcoholic Fatty Liver Disease (NAFLD)

Pharmacological treatment

Life-style changes
Calorie Restriction + Physical Exercise

Lipid accumulation

Fat accumulates in the liver

Fat plus inflammation

Scar tissue replaces liver cells

RvD1

Adapted from Adams et al. CMAJ 2005
RvD1 Actions on Hepatic Inflammation

Design of the Study

- **Chow** (Chow group, n=9)
- **HFD** (CT group, n=13)
- **CR + Plb** (CR group, n=8)
- **CR + RvD1** (300 ng/mouse·day, n=7)

Switch from HFD to chow diet; calorie restriction (CR)

Hematoxylin-eosin staining

- **Chow**
- **CT**
- **CR**
- **CR+RvD1**

F4/80 staining

- **Chow**
- **CT**
- **CR**
- **CR+RvD1**

Macrophage Infiltrate

- **% Stained area**
 - **Chow**, **CT**, **CR**, **CR+RvD1**
 - **P<0.001**
 - **P<0.05**
 - **C**

Protein expression

- **CCR7 (M1 marker)**
 - **CT**, **CR**, **CR+RvD1**
 - **P<0.05**
- **Arg1 (M2 marker)**
 - **Arg1**, **b-actin**
 - **P<0.05**

Rius and Clària. FASEB J. 2014
RvD1 Anti-inflammatory Actions in Precision-Cut Liver Tissue Slices

Hypoxia

** mRNA expression (arbitrary units)**

<table>
<thead>
<tr>
<th>Gene</th>
<th>COX-2</th>
<th>IL-1β</th>
<th>IL-6</th>
<th>CCR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RvD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL+Hypoxia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.001

RvD1

Hypoxia + RvD1

Clodronate Liposomes (CLL)

Rius and Clària. FASEB J. 2014
RvD1 Modulates Hepatic MicroRNA levels

Placebo Group (n=6)
RvD1 Group (n=6)

% expression vs Placebo

Rius and Clària. FASEB J. 2014
Ingenuity Pathway Analysis (IPA)

RvD1

Rius and Clària. FASEB J. 2014
Fat-1 mice: transgenic expression of an omega-3 desaturase gene

C. elegans → Omega-3 desaturase → Microinjection into fertilized egg → Fat-1 mice

ω-3 index

WT

Fat-1

ω-6/ω-3

C_{13}H_{19}O_{2}=153
C_{17}H_{23}O_{2}=207.14

Relative concentration

López-Vicario and Clària. Gut 2014

White et al. Diabetes 2010
Hudert et al. PNAS 2006
Fat-1 mice are Protected from Hepatic Steatosis and Inflammation

Adipose tissue

WT

Fat-1

Liver

WT

Fat-1

WT Fat-1

Oil Red-O

Liver

H&E

F4/80+

Serum Insulin

GMG/dL

Serum Glucose

GMG/dL

JNK1

JNK2

P-JNK1

P-JNK2

P-JNK1/JNK1

P-JNK2/JNK2

López-Vicario and Clària. Gut 2014
Increased omega-3 epoxides in Fat-1 mice

Cell membrane

AA

COOH

DHA

COOH

EPA

COOH

CYP

PLA2

5,6-EET

8,9-EET

11,12-EET

14,15-EET

19,20-EDP

17,18-EEQ

5,6-DHET

8,9-DHET

11,12-DHET

14,15-DHET

19,20-DiHDPA

17,18-DiHETE

sEH

Inhibitor

Inactive metabolites

Omega-6 epoxides

Omega-3 epoxides

5,6-DHET

8,9-DHET

11,12-DHET

14,15-DHET

19,20-DiHDPA

17,18-DiHETE
Omega-3 epoxides regulate autophagy and ER stress in hepatocytes

Summary of Metabolic Actions of Omega-3-derived Lipid Mediators

Summary

- Un-resolved inflammation is a common finding in chronic health conditions.

- Chronic metabolic diseases have a remarkable deficit in SPM.

- SPM are endogenous immunoresolvents promoting the resolution of inflammation.

- SPM promote resolution by shifting macrophages toward a M2 phenotype and deactivating the inflammasome.

- SPM exert protective actions by blocking ER stress and improving survival in parenchymal cells.

- SPM are a promising discovery for chronic health conditions.
LAB MEMBERS
Current
Dr. Esther Titos
Dr. Aritz Lopategi
Dr. Cristina López-Vicario
Dr. Naira Rico
Bibiana Rius
José Alcaraz
Anabel Martínez
Albert Salvatella

Former
Dr. Verónica García-Alonso
Dr. Eva Morán-Salvador (Newcastle University)
Dr. Natàlia Ferré (Universitat Rovira i Virgili)
Dr. Marta López-Parra (Centro Nacional de Análisis Genómico)
Dr. Anna Planagumà (Almirall)
Dr. Ana González-Périz (Centro Nacional de Análisis Genómico)
Dr. Raquel Horrillo (Grifols)
Dr. Marcos Martínez-Clemente (Grifols)

COLLABORATORS
Dr. Charles N. Serhan (BWH/Harvard Univ.)
Dr. Karsten Gronert (Univ. California Berkeley)
Dr. Bruce Hammock (Uni. California Davis)
Dr. Colin Funk (Queen’s Univ.)
Dr. Per-Johan Jakobsson (Karolinska Institutet)
Dr. Mario Romano (Univ. Chieti)